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Abstract. Adverse drug events (ADEs) are a public health issue. The objective of 
this work is to data-mine electronic health records in order to automatically 
identify ADEs and generate alert rules to prevent those ADEs. The first step of 
data-mining is to transform native and complex data into a set of binary variables 
that can be used as causes and effects. The second step is to identify cause-to-
effect relationships using statistical methods. After mining 10,500 hospitalizations 
from Denmark and France, we automatically obtain 250 rules, 75 have been 
validated till now. The article details the data aggregation and an example of 
decision tree that allows finding several rules in the field of vitamin K antagonists. 
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Introduction 

Adverse Drug Events (ADEs) are a public health issue. In some hospitals drugs are 
prescribed using a computerized provider order entry (CPOE) in the frame of the 
medication use process. In this case it is possible to couple the CPOE with a clinical 
decision support system (CDSS). It should be then theoretically possible to prevent 
ADEs by adding some alert rules, such as “aspirin & vitamin K antagonist => increased 
risk of bleeding”. 

But in usual approaches the alert rules are specified by experts. The knowledge 
that is used usually relies on 2 main sources: 

• Academic knowledge: this knowledge mainly relies on summaries of product 
characteristics and ADE declarations... but ADE declarations are known to 
only report a tiny proportion of ADEs [1, 2], mostly rare or grave events 
where the physician’s responsibility is not involved. 

• Staff operated reviews (record reviews, chart reviews): those methods can 
consider very complex situations mixing diseases, drug characteristics and 
human factors. But they are time-consuming, mostly because ADEs are rare 
events so their observation requires the review of many normal cases [2]. 

Those rules induce another underestimated problem: they are applied in the same 
way to the medical departments all over the countries although those medical 
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departments vary a lot on several aspects. As a consequence in those classic approaches 
the alerts are too numerous and of poor accuracy. The physicians often complain of 
over-alerting and their confidence in the system decreases to such an extent that some 
of them use to deactivate the CDSS. 

The main objective or the PSIP project (Patient Safety through Intelligent 
Procedures in medication [3]) is to build a CDSS relying on automated rules generation, 
taking into account the context. The objectives of the present work are: 

1. to perform a data aggregation: the aim of this step is to transform complex 
data into events that could be usable as “causes” and “effects”. This step is 
very important because of the complexity of the available data (many codes, 
repeated assessments over time, cardinalities of the data scheme, etc.) 

2. to automatically data-mine [4] those data in order: 
• to identify adverse drug events 
• to generate control rules to prevent those ADEs 

Two important points must be emphasized: 
1. The process has to be able to detect ADEs in routine datasets. In those datasets, 

the ADEs are not flagged.. 
2. All the process must be automated so that it could be easily performed on new 

datasets. 

1. Material and methods 

1.1. Available data 

Electronic Health Records (EHRs) seem to be the best data source in the field of ADEs 
[5, 6]. For the project we have designed a data model and implemented it in a central 
repository. This data model contains 8 tables and 92 fields (Figure 1). 
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Figure 1. The 8 tables of the data model. 

Data extractions are performed to feed the repository. An important point is that no 
data has to be specifically recorded for the project: we only use routinely collected data 
from EHRs. Those data include: 

- medical and administrative information 
- diagnosis encoded using ICD10 [7]  
- medical procedures encoded using national classifications 
- drug prescriptions encoded using the ATC classification [8] 



- laboratory results encoded using the C-NPU classification (IUPAC) [9] 
Data are extracted from EHRs provided by the hospitals involved in the project. 

An iterative quality control of the data is performed in order to get reliable data and to 
improve the extraction mechanisms. Data extraction is being continued, the present 
work is performed using 10,500 Danish and French hospital stays of year 2007, mostly 
from cardiologic or geriatric units: 

- Capital Region of Denmark hospitals (Dk): 2,700 hospital stays 
- Rouen university hospital (F): 800 hospital stays 
- Denain hospital (F): 7,000 hospital stays 

1.2. Our hook to fish ADEs 

We follow a four-step procedure (Figure 2): 
1. Transform the data into events: the native data are complex (thousands of 

codes, repeated assessments of various lab settings, etc.). They are transformed 
into binary events. Those events can happen or not. If they happen, they have a 
start date and a stop date. 

2. Qualify the events as “potential cause of ADEs” or “potential events of 
ADEs”. 

3. Automatically find statistical associations between causes and effects. At this 
step, associations do not necessary mean ADE. For instance we could find 
“age>90 & renal insufficiency => too long stay”. 

4. Filter the associations: associations that contain drugs in their list of causes are 
kept and are validated against academic knowledge. 

Step 1: transform the data 
into events
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Figure 2. Our four-step procedure to fish ADEs. 

1.3. Step 1: Transform the data into event (data aggregation) 

The extracted datasets fit an 8-tables relational scheme. But such a data repository 
cannot be used for statistical analysis: 

- No statistical method can deal with an 8-tables data scheme 
- The encoding systems allow for too numerous classes: about 17,000 codes for 

ICD10, about 5,400 codes for the ATC, and dozens of different settings for lab 
results. Many codes have comparable meanings (e.g. the concept of 
hypoxemia is accessible from the oxygen blood pressure or the oxygen 



saturation of hemoglobin) and some concepts result from several settings (e.g. 
metabolic acidosis). 

- Some variables have repeated assessments all the stay along, e.g. lab results (a 
red cells count can be assessed 20 times during the stay, returning normal, too 
low or too high values) or drug prescriptions (a specific drug can be 
prescribed twice per day), etc. 

We develop aggregating engines to transform the available data into information 
described as sets of events (Figure 3). For each kind of data (administrative information, 
diagnoses, drugs, lab results), a specific aggregating engine is developed and fed with a 
specific aggregation policy. Each policy is described outside the engine, allowing for 
several persons to work in the same time to improve the aggregation phase. The 
aggregating engines allow getting a table that describes the events thanks to many 
binary fields. 
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Figure 3. Aggregating engines and mapping policies 

Classical statistical analyses rely on associations between different variables that 
are considered as stable states. This is true in some cases (e.g. a patient remains a man 
or a woman all the stay long) but most often it is false (e.g. a hypoalbuminemia, 
potential cause of some ADEs, might only exist at days 5, 6 & 7 of a 20-days-long 
stay). The engines transform data into events. For a given hospital stay, events can have 
one of the two values (Figure 4): 

- 0: the event doesn’t occur 
- 1: the event occurs at least once. In that case, it is characterized by its start 

date and end date. 
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Figure 4. Events can be set to 0 or 1 

 
 



Example of the Lab Results 
 

As an example, let’s examine the aggregation of the INR (international normalized 
ratio) values on one example of hospital stay. This setting is interesting for patients 
under vitamin K antagonists. The expected values are between 3 and 4.5. In this 
example, INR can assess 2 kinds of risky situations: 

• When INR<3, the patient is exposed to a risk of thrombosis. 
• When INR>4.5 the patient is exposed to a risk of bleeding. 
 
The lab aggregating engine uses the lab mapping policies and is able to fill two 

binary variables: too_low_inr and too_high_inr. Those variables are accompanied by 
start dates and stop dates when their values are set to 1 (Figure 5). LOCF (last 
observation carried forward) is used to interpolate the available values. 
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Figure 5. Example of transformation: the INR values of a stay 

1.4. Step 2: qualify the events as “potential cause” or “potential effect” 

We first perform an informal analysis: in the available data, some can be identified as 
“potential cause of an ADE” and some other as “potential effect of an ADE”. Table 1 
shows examples of classifications. 
Table 1. Examples of information classification: potential case / potential effect 

Kind of information Ex. of potential ADE cause Ex. of potential ADE effect 
Administrative information Age, gender Death, too long stay 

Diagnosis Chronic renal insufficiency Hemorrhage at the middle of the stay 

Lab results Admission with a too high INR Hyperkaliemia at the middle of the stay 

Drug prescription Vitamin K antagonist Specific antidote 

 
Finally thanks to the data-to-events transformation, it is possible to simply 

consider that all the events that occur after the patient’s admittance are potential effects. 
 
Example of the Lab Results 
 
In this case (Figure 5), a too low INR occurred from the 3rd day (included) to the 10th 
day (excluded). Those two binary variables can be used as causes and as effects. 

• too_low_inr (=1 from day 3 to day 9 in this case) 
o is able to be an effect with value=1. All the other events that occur before 

day 3 will be candidate to explain that effect 
o is able to be a cause for every effects that occur between day 3 and day 10 



• too_high_inr (=0 all along in this case): 
o is able to be an effect with value=0. All the other events will be candidate 

to explain the absence of effect, whatever their date 
o is able to be a cause with value=0 for every effects, whenever they occur 

 
This approach has two important advantages: 
• A statistical association doesn’t have any direction. But taking the dates into 

account prevents from causal relationship inversion. Events that are posterior 
to the effects cannot be interpreted as causes. Events that are anterior but too 
far from the effect are not taken into account. 

• Effects can become causes in their turn. That approach allows considering an 
ADE domino effect. For instance:  
first drug A & age>70 => acute renal insufficiency 
then acute renal insufficiency & drug B => hemorrhage  

1.5. Step 3: automatically find statistical associations between causes and effects 

The previous steps allow identifying potential ADE causes and potential ADE effects. 
The aim of statistical analysis is then to identify some links between (combination of) 
potential causes and potential effects. Decision trees [10-15] with the CART method 
were used thanks to the RPART package [16] of R [17]. Decision trees allow 
identifying several decision rules containing 1 to K conditions such as: 

IF( condition_1 & … & condition_K) THEN outcome might occur 

Each rule is characterized by its confidence (1: proportion of outcome knowing 
that the conditions are matched) and its support (2: proportion of records matching both 
conditions and outcome). 

Confidence = P( outcome | condition_1 ∩…∩ condition_K) (1) 

Support = P( outcome ∩ condition_1 ∩…∩ condition_K) (2) 

Rules are automatically produced. 

1.6. Step 4: filter the associations, keep probable ADEs 

The rules are then automatically filtered according to the following criteria: 
• The rule must contain at least one of the following events type as a condition: 

o one drug 
o one drug suppression 
o one lab result that is implicitly linked to a drug (e.g. INR for vitamin K 

antagonist, digoxinemia for digoxin…) 
• The rule must increase the prevalence of the effect:  

Confidence > P( outcome ) 
• The rule must lead to a significant Fisher’s exact test for independency 

between the set of conditions and the outcome. 



A theoretical validation of the obtained rules is finally performed by physicians. 
Only rules that can be explained according to summaries of products characteristics and 
bibliography are kept. That review uses several drug-related web information portals 
[18-20], Pubmed [21] referenced papers, and French summaries of products 
characteristics provided by the Vidal company. In order to be sure the validated rules 
are reliable, the stays they allow to detect have to be reviewed by experts; this work is 
currently being processed. 

2. Results 

2.1. Data aggregation 

The figures that are presented here only reflect the current progress status, they are 
likely to change. 

The 18,000 ICD10 codes are aggregated into 48 categories of chronic diseases.  
The 5,400 ATC codes are aggregated into 242 drug categories. Those categories 

are designed to be redundant: they allow for transversal categories such as “hepatic 
enzyme inhibitors”. The classification has to consider pharmacodynamics and 
pharmacokinetics although most of the existing classifications are based on therapeutic 
indications. Drug suppression is also traced as a potential ADE cause. 

The laboratory results are aggregated into 35 lab abnormalities. 
The various administrative fields are aggregated into 15 different variables. 
The data aggregation produces one dataset per medical department. In each dataset 

up to 538 cause variables can be used to explain or predict 79 effect variables.  

2.2. Decision rules 

Decision trees are systematically computed in order to explain each effect by all the 
available potential causes. It allows generating more than 250 decision rules of which 
75 have been validated till now. 

In the following example we trace the effect “appearance of a too low INR”. When 
patients are under vitamin K antagonist (VKA) treatment, the international normalized 
ratio (INR) is traced in order to evaluate the treatment. In case of too high INR, there is 
a VKA overdose; the patient could present a hemorrhage. In case of too low INR, there 
is a VKA underdose; the patient is exposed to a risk of thrombosis. A tree is 
automatically generated. 

The first split of the tree shows that the effect is most associated with the 
admission with a too high INR (risk of bleeding, Figure 6). When a patient enters the 
department with a too high INR there might be an over-correction of the treatment and 
a risk of thrombosis in 29% of the cases. Elderly patients admitted with a too high INR 
and a hypoalbuminemia are over-corrected in 87% cases. Albumin is the blood protein 
to which VKAs are linked. Only the unlinked fraction of VKAs is biologically active. 
Hypoalbuminemia was probably the cause of the too high INR but it also increases the 
effect of VKA correction, which was probably ignored by the physician. 

That rule is interesting because it mixes together three kinds of conditions:  
• a pharmacokinetics condition: hypoalbuminemia 
• an epidemiological condition: the age 



• an organizational condition: entry with too high INR 
The patients who enter with a normal INR and receive in the same time VKA and 

a digestive prokinetic drug experience a too low INR in 67% cases (Figure 7a). 
Digestive prokinetic drugs decrease the bio-availability of VKA. 

The patients aged less than 76 that are given VKA and beta lactam antibiotics 
experience a too low INR in 60% cases (Figure 7b). Several interpretations are 
possible: the antibiotic indicates an infection; infections may increase hepatic 
catabolism and decrease VKA bio-availability. Otherwise, antibiotics decrease vitamin 
K production in the digestive tract, that effect might be known and overbalanced by the 
physician. 
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Figure 6. First rule gives p(too low INR during stay)=86% instead of 1% 

No

No

Yes

Yes

No

Too high INR at the entry?

No Yes

No Yes

No Yes

No Yes

Yes

Vitamine K antagonist?

Prokinetic drug?

Betalactam antibiotic?

1,08%

0,8%

0,5% 7,75%

66,7%4,8%

2,65%
30%

60% 0%

0%

29,2%

58,3%

20% 85,7%Age > 76.25?

Age > 78.5?

Hypoalbuminemia?

Too low INR during the stay (p=1,08%)

   

No

No

Yes

Yes

No

Too high INR at the entry?

No Yes

No Yes

No Yes

No Yes

Yes

Vitamine K antagonist?

Prokinetic drug?

Betalactam antibiotic?

1,08%

0,8%

0,5% 7,75%

66,7%4,8%

2,65%
30%

60% 0%

0%

29,2%

58,3%

20% 85,7%Age > 76.25?

Age > 78.5?

Hypoalbuminemia?

Too low INR during the stay (p=1,08%)

 
Figure 7. Second and third rules give p(too low INR during stay)= 67% and 80% 

3. Discussion and conclusion 

Data mining often relies on a simple idea: 
1. The observed effect is known: the group with effect (ADE=1) and the group 

without effect (ADE=0) have already been identified. 



2. Several potential causes are available. In epidemiological projects, a restricted 
list of cause variables is chosen a priori. In data mining projects, a large set of 
potential causes is available; a statistical method is used to find the more 
significant ones. 

3. The appropriate methods are used to explain the effect by the causes 
 
That procedure is not possible in our project: 
• mostly because the effect is not identified: no one flagged the cases as 

“normal” (ADE=0) nor “abnormal” (ADE=1), and our objective is to avoid a 
time-consuming staff operated review 

• even most of the causes do not formally exist in the data 
 
For that reason, data aggregation is a very important step. The accuracy of the 

results essentially relies on that step. However we are aware that despite its advantages, 
our procedure also suffers from some weaknesses. (1) Only the data that are recorded 
can be mined. Some clinical events might occur and might not be encoded in the EHR. 
(2) Diagnosis codes are important to describe acute and chronic diseases. Till now we 
are only able to take into account chronic diseases and acute diseases that cannot occur 
during the hospitalization. For instance if an ICD10 code describing a hemorrhage is 
present in the data, we cannot know if it is the admission ground or an event occurring 
during the hospitalization. 

At the opposite of academic knowledge, the results of the PSIP project allow to 
sort the knowledge according to the probability of the events. For instance the 
“contraindication” and “use caution” sections of the French summaries of products 
characteristics of current VKAs are 3,300 words long. Moreover the knowledge that 
first appears in the text is already well known by the physicians so that the events that 
are first described rarely occur. The readers are flooded. 

In addition, the rules from the PSIP project are able to take into account “what 
happened today”. Conditions such as “the patient entered with a too high INR” are 
typically useful but absent from academic knowledge. Organizational circumstances 
are probably not enough considered. 

First results of the PSIP project are encouraging [22] and announce a new 
approach in the ADE studies, actual approaches being essentially based on staff 
operated cases reviews [23] or databases queries [24-26]. The project is still be 
continued: the mapping policies are improved, the rule discovery is extended to other 
drugs and diseases, and other data-mining methods are being tried and compared with 
the decision trees: we are currently working on association rules [27, 28]. 
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