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Abstract 

A knowledge-based approach is proposed that is 

employed for the construction of a framework 

suitable for the management and effective use of 

knowledge on Adverse Drug Event (ADE) prevention. 

The framework has as its core part a Knowledge 

Base (KB) comprised of rule-based knowledge 

sources, that is accompanied by the necessary 

inference and query mechanisms to provide 

healthcare professionals and patients with decision 

support services in clinical practice, in terms of 

alerts and recommendations on preventable ADEs. 

The relevant Knowledge Based System (KBS) is 

developed in the context of the EU-funded research 

project PSIP (Patient Safety through Intelligent 

Procedures in Medication). In the current paper, we 

present the foundations of the framework, its 

knowledge model and KB structure, as well as recent 

progress as regards the population of the KB, the 

implementation of the KBS, and results on the KBS 

verification in decision support operation. 

Introduction 

The potential of Information Technology (IT) tools 

and techniques towards Adverse Drug Event (ADE) 

prevention has been highlighted in various studies1. 

Major focus of IT-based research on ADEs has been 

automatic or semi-automatic identification of ADEs 

by employing machine learning and statistical 

inference techniques applied to patient data 

repositories2-4, e.g. Electronic Health Records 

(EHRs). In this regard, studies have been 

concentrated on the development of IT tools capable 

of providing evidence on the origin of ADEs, 

following typically experts review evaluation of the 

obtained results. These outcomes were foreseen to 

constitute the basis for advancing the decision 

support functionalities on ADEs offered by clinical 

information systems, such as Computerized Physician 

Order Entry (CPOE) systems. However, the majority 

of the proposed approaches did not elaborate further 

towards the incorporation of the ADE signals 

identified into actual Clinical Decision Support 

Systems (CDSSs) capable of interoperating with 

clinical information systems, e.g. CPOEs and EHRs. 

As more mature evidence on ADE prevalence is 

gained, the focus of IT research has been also 

attracted by the incorporation of the identified ADE 

patterns or signals into sophisticated knowledge-

based models. For example, a data mining tool has 

been proposed aiming to improve signal detection 

algorithms by performing terminological reasoning on 

MedDRA codes described in description logic5. In 

addition, an integrated approach for the identification 

of ADE signals has been proposed that is based on 

Semantic Web technologies6; as the information 

required for identifying signals during drug design 

and development resides in heterogeneous, 

distributed data repositories, the Semantic Web 

paradigm offers new capabilities for data integration 

that exploits explicit semantics and well-defined 

ontologies. Following also an ontology-based 

approach, a prototype medical intelligent assistant has 

been proposed aiming to improve patient safety by 

reducing medical errors within hospitals7. The 

ontology encapsulates hospital care concepts 

including activities, procedures and policies, as well 

as medical knowledge, and is particularly designed to 

track the implications of medical decisions taken by 

health professionals within the context of 

guidelines/regulations of the medical environment, 

and the established medical knowledge. 

Aligned with these knowledge-based efforts, in the 

scope of the European project PSIP (Patient Safety 

through Intelligent Procedures in Medication), a 

knowledge engineering framework is constructed 

aiming to systematically represent and manage 

identified and validated ADE signals following a 

knowledge discovery and elicitation phase8. The core 

of this framework consists of a Knowledge Base (KB) 

encapsulating the abovementioned signals that are 

provided in the form of rules. This framework 
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constitutes the basis for the construction of 

contextualized CDSSs for ADE prevention. In this 

paper, we extend our preliminary work concerning 

the initial establishment of this framework9, by 

presenting the knowledge model elaborated and its 

foundations, the underlying formalism adopted, the 

query and inference mechanisms employed, focusing 

also on KBS implementation and verification aspects. 

Methods 

The current work focuses on the construction of a 

rule-based knowledge framework which, in addition 

to ADE identification, is designed to support ADE 

prevention through effective decision support that is 

delivered via alerts and recommendations to the 

clinical personnel. It incorporates a context-sensitive, 

meta-rule level, which is used to address rule ranking 

and decide on the applicability of ADE signals per 

case, in order to eliminate over-alerting. The 

proposed knowledge model is mapped to a data 

model specifically designed within the PSIP project 

for querying the KB with actual patient data10. In the 

following, we present the major parts elaborated to 

synthesize the proposed knowledge framework. 

Rules Structure: ADE signals elaborated in the PSIP 

knowledge model constitute production rules11. These 

rules follow the general form: 

p1 AND p2 AND ... AND pn → h,    (1) 

where p1, p2, ..., pn are atomic formulae of some 

accepted language (e.g., propositional logic, 

attributive logic, first order logic, etc.) and h is the 

conclusion, action or decision. In PSIP, pi are pseudo-

variables which correspond to groups of a) drug 

codes in ATC, b) lab results in C-NPU/IUPAC, or c) 

diagnosis codes in ICD-10 classification; the h part 

constitutes the effect of the rule, i.e. the actual ADE, 

which typically corresponds to a diagnostic pseudo-

variable. 

Since these rules are statistically inferred by applying 

data mining techniques to diverse EHRs8, the 

importance and applicability of each rule is 

determined based on its statistical significance in the 

local context that is being triggered, i.e. 

hospital/department. Thus, statistical features such as 

the confidence (probability of having the effect 

knowing that the conditions are met), the support 

(probability of having the effect and matching the 

conditions at the same time), the Fisher test p-value 

and so forth constitute rule meta-data that may be 

particularly used to address over-alerting. 

Besides data mining originated rules, a commercial 

knowledge source capturing drug to drug interactions, 

drug contraindications, drug to allergy class 

associations, as well as drug to lab value or medical 

parameter associations, is made available in the 

project by the partner VIDAL (http://www.vidal.fr/), 

following also a rule-based formalism and based on 

the abovementioned standard terminologies. 

Knowledge Base Structure: The knowledge 

employed in PSIP belongs in three categories: a) 

domain knowledge, defining types and facts, which 

are generally static and structured via concepts (i.e., 

classes), relations-associations, attributes, and rule 

types (expressions); b) task knowledge, in terms of 

functional decomposition, and control; in this regard, 

knowledge is elaborated with respect to combination 

of tasks to reach a goal/workflow, or oppositely, 

decomposition of complex tasks into separate 

processes; c) inference knowledge, corresponding to 

the basic reasoning steps that can be followed in the 

domain and are applied by tasks.  

According to the above, the PSIP KB comprises of a 

set of ontology-based structures, either PSIP-specific 

or standard classifications. In addition, a rule-based 

component is included that is defined via a set of 

classes and populated with ADE rules. The ontology-

based structures and the rule-based component 

constitute the fundamental elements to define 

complex procedural logic in terms of protocols and 

guidelines, according to the computer interpretable 

guidelines formalism12, which constitutes the core 

knowledge engineering methodology employed in 

this work. This formalism enables the unification of 

the former knowledge components, so as to provide a 

common knowledge framework based on which the 

CDSS will offer its services. 

Query and Inference Mechanisms: As the KB 

developed constitutes the core part of CDSS modules 

for ADE prevention, an appropriate interface for 

querying the KB with patient records has been 

defined that is based on a common data model10, so as 

to test the case(s) of interest against ADE signals 

incorporated in the KB. This interface relies on the 

mapping of each concept/attribute defined in the 

knowledge model (presented in the following) with 

the relevant fields/tables defined in the data model. 

Considering a tuple <Dr, Di, Bi>, where Dr 

corresponds to drug values, Di to diagnosis values 

and Bi to lab results of a patient stored in his/her EHR 

as the input of the CDSS, and a set of rules R 

incorporated in the KB, an inference mechanism f is 

introduced, in order to match the above tuple in R, 

i.e.: 

f: <Dr, Di, Bi> → R.    (2) 
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The outcome of this procedure is a new set RA⊆ R, 

resulting in potential ADE signal(s). In case of 

multiple applicable ADE signals, i.e. multiple rules 

triggered, a major issue in the application of 

discourse constitutes the elimination of over-alerting, 

i.e. multiple rules firing. In this regard, the CDSS is 

fine-tuned (in both construction and runtime mode) 

following a context-sensitive strategy that applies 

meta-rules in terms of thresholds concerning the 

statistical significance of the corresponding triggered 

rules, to determine the most significant alerts or 

recommendations that will reach the CDSS end-user. 

Thus, a new mechanism g is introduced that maps RA 

into a set RB⊆ RA according to the context criteria CX: 

g: RA / CX → RB.    (3) 

It has to be noted that there are cases where it is 

necessary to preserve a part of RA as an outcome of 

(2), independently of the meta-rules defined in CX. 

Such a potential is taken into account in the 

mechanism g. Finally, the CDSS outcome is a list of 

effects that is associated with RB, along with 

appropriate explanations of the respective rules, the 

importance of the potential ADEs, the data that made 

the rules fire, as well as recommendations for actions. 

Knowledge Model: The core component of the 

proposed model is in the form of rules associating a 

number of conditions to an effect. A set of additional 

components are used as terminology for efficiently 

expressing these rules. Moreover, a separate rule-

based component is included, which encapsulates 

knowledge on the applicability of basic rules to 

various clinical practice circumstances. Thus, three 

levels/types of rules have been defined, main rules, 

intermediate rules and meta-rules. 

Figure 1 illustrates the conceptual schema of the PSIP 

knowledge model. Rule constitutes the primary 

concept corresponding to the main rules on predicting 

ADEs and is linked with Conditions and Effect. The 

cardinality of the relevant relations are in line with 

the basic form shown in (1), according to which a rule 

comprises of an arbitrary number of conditions and 

generates only one effect. Note that all possible 

instances of Effect are enlisted, i.e. each effect 

identified in PSIP is coded and given a name in the 

form of pseudo-variable. It is also expected that more 

than one rule may be linked to the same effect. This 

property is considered for rule grouping and inference 

optimization. 

Each Rule in the KB is uniquely indexed and the 

corresponding source is recorded. Attributes related 

to rule meta-data are also defined. These parameters 

are initially evaluated for each rule during the data 

mining phase for rule generation. However, the 

statistical features may also be evaluated in the 

specific clinical epidemiology in which the KB is to 

be used. Hence, the thresholds for rule application 

may be adjusted dynamically to the hospital/ 

department where the KB is used. The value of such 

statistical parameters is an indication of how likely it 

is that a rule will fire (sensitivity), and with what 

confidence the predicted event will actually happen 

(predictive value). Thus, their usefulness is two-fold: 

(a) filtering the rules according to the desirable 

sensitivity and predictability, in order to avoid over-

alerting and (b) adjusting the KB to a specific 

country, hospital and department by evaluating the 

parameters locally. 

 
Figure 1. Conceptual schema of the PSIP knowledge 

model. 

The Condition consists of the value of one variable, a 

comparison operator and one reference value, while a 

TRUE/FALSE value is returned according to the 

result of the comparison. The variable checked by 

each condition may be either a prescribed or 

suppressed drug, a diagnosis (acute or chronic patient 

condition), and a patient characteristic (e.g., age, 

weight) or a lab value (e.g. the result of a biology 

test) compared to a threshold. Each of these variables 

is defined as a concept, since it corresponds to a set 

of attributes. 

The approach adopted for expressing diagnoses and 

medication was to define a set of pseudo-variables. 

These express groups of conditions or drugs, which 

for the purposes of ADEs have the same effect. 

Diagnosis and Drug correspond to such PSIP-defined 

pseudo-variables and are implemented as 

intermediate rules. Each instance of Diagnosis or 
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Drug is associated with a set of specific diagnoses or 

specific drugs, respectively. The population of 

Diagnosis and Drugs with groups of specific 

diagnoses and types of medications with similar 

effects has resulted by the knowledge discovery 

phase
8
. It is considered as part of the domain 

knowledge and is subject to refinements and updates. 

The Patient concept is associated with patient data 

that participate in Condition. 

The mechanism that controls the applicability of rules 

to a particular context and the subset of alerts to be 

forwarded as decision support output, as formulated 

in (3), is modeled via meta-rules. For this purpose, 

the concepts Meta-rule and Context are defined. Each 

instance of Meta-rule is a filtering mechanism which 

controls the subset of basic rules that will be visible 

to the decision support service. The parameters 

considered by each meta-rule are defined in Context 

(i.e. whatever is related to the environment and the 

needs of the targeted user). 

Results 

The presented knowledge framework has been 

implemented in GASTON (http://www.medecs.nl/). 

The core of GASTON consists of a guideline 

representation formalism
13

, relying on a combination 

of knowledge representation approaches and 

concepts, i.e., primitives, problem-solving methods 

and ontologies, upon which the conceptual schema 

illustrated in Figure 1 has been implemented. 

Currently, the KB is populated with 245 ADE rules 

originated from data mining (that correspond to about 

400 intermediate rules for pseudo-variables 

concerning drugs, diagnosis, patient data and lab 

results) and stored as Protégé frames 

(http://protege.stanford.edu/) as well as in an XML-

based representation (both supported/offered by 

GASTON). Including standard classifications, the 

current KB encapsulates 46,702 classes and 47,810 

instances. 

Furthermore, an SQL-based, parameterized interface 

has been developed to interface the KB with the 

VIDAL drug knowledge source, as an additional 

source for ADE prevention that the CDSS modules 

can exploit. A mapping of each concept/attribute 

defined in the knowledge model with the relevant 

fields/tables defined in the data model
10

 enabled the 

development of an XML-based request-response 

interface for querying the KB. In addition, a basic 

terminological reasoning mechanism has been 

developed to appropriately expand/narrow terms 

contained in the data requests (queries), according to 

the semantics of the intermediate rules as 

defined/implied in source knowledge. 

Figure 2 illustrates an example rule, implemented as a 

guideline in GASTON. The rule is: “renal failure & 

NO Suspension of antithrombotic & high weight 

heparin & NO Suspension of proton pump inhibitor 

& NO sympathomimetic & NO Suspension of high 

weight heparin → Appearance of hyperkaliemia 

(K
+
>5.3)”. This rule consists of six conditions, one 

related to diagnosis and the rest to drugs. The initial 

conditions checked via intermediate rules and the 

procedural logic according to which the rule is 

implemented are depicted. 

Several options are explored for contextualizing the 

KB, according to the inference mechanism described. 

As knowledge sharing between the elicitation and 

engineering phases in PSIP is based on custom XML 

schemas, mechanisms for automatically importing 

source knowledge into the KB have been developed, 

performing in advance syntactic verification. 

Knowledge maintenance mechanisms have also been 

elaborated, with particular emphasis on the capability 

of defining/altering rules’ metadata in the runtime 

mode of the CDSS. 

Verification of the populated KB was also performed, 

aiming to identify whether the implemented rules fire 

on the same cases as identified by the data mining 

techniques. For this purpose, the CDSS responses for 

the same clinical database used in the data mining, as 

well as a list of hospital stays (i.e. a hospitalization 

period for a patient) fitting each rule conditions were 

used as input. It has to be noted that each stay 

corresponds to many cases of KB request and 

inference. The outcome of this procedure was 

assessed via contingency tables14, comparing the 

identities of the KB rules fired on each hospital stay 

with its counterpart from the data mining. The 

verification was based on a selected set of ADEs, i.e. 

hyponatremia, hyperkalemia, coagulation problems 

and renal insufficiency. In this procedure, a total of 

21,331 hospital stays comprising 3,796,918 

classification tasks were analyzed. Overall, the 

verification process, which was iteratively performed 

as consecutive versions of the KB were released, 

identified about 5-10% of the hospital stays in which 

potential errors in rules implementation had to be 

analyzed and corrected. This was primarily due to 

development errors and ambiguities in the description 

of source knowledge.  

Conclusion 

In this paper, we presented a knowledge-based 

approach for constructing CDSSs for ADE 
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prevention. The selection of the knowledge 

engineering approach and the design of the proposed 

knowledge framework have been primarily driven by 

the knowledge sources characteristics and the 

problem to be solved. The verification of the KB 

content as well as the inference and query 

mechanisms indicated that the approach followed is 

effective and technically sound. A clinical validation 

phase of the decision support services offered by the 

proposed knowledge framework is currently 

conducted to assess the added value that may be 

introduced in actual clinical settings.  
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Figure 2. Example rule implementation as guideline illustrated in the knowledge authoring tool employed. 
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