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Data Mining to Generate Adverse Drug Events
Detection Rules

Emmanuel Chazard, Grégoire Ficheur, Stéphanie Bernonville, Michel Luyckx, and Régis Beuscart

Abstract—Adverse drug events (ADEs) are a public health is-
sue. Their detection usually relies on voluntary reporting or med-
ical chart reviews. The objective of this paper is to automatically
detect cases of ADEs by data mining. 115 447 complete past hos-
pital stays are extracted from six French, Danish, and Bulgarian
hospitals using a common data model including diagnoses, drug
administrations, laboratory results, and free-text records. Differ-
ent kinds of outcomes are traced, and supervised rule induction
methods (decision trees and association rules) are used to discover
ADE detection rules, with respect to time constraints. The rules are
then filtered, validated, and reorganized by a committee of experts.
The rules are described in a rule repository, and several statistics
are automatically computed in every medical department, such
as the confidence, relative risk, and median delay of outcome ap-
pearance. 236 validated ADE-detection rules are discovered; they
enable to detect 27 different kinds of outcomes. The rules use a
various number of conditions related to laboratory results, dis-
eases, drug administration, and demographics. Some rules involve
innovative conditions, such as drug discontinuations.

Index Terms—Adverse drug events (ADEs), data mining, deci-
sion trees, electronic health records, patient safety.

I. INTRODUCTION

ADVERSE drug events (ADEs) endanger patients as they
are the most common type of iatrogenic injury [1]. They

can be defined as “injuries due to medication management rather
than the underlying condition of the patient” [2]. ADEs can be
split into two categories: preventable ADEs that are medication
errors leading to patient harm, and nonpreventable ADEs that
are called adverse drug reactions [3].

Different methods are used to identify ADEs [4]–[6], the most
prominent ones being chart reviews and reporting systems. Ret-
rospective medical chart reviews constitute the main source of
reliable epidemiological knowledge on ADEs, but the method
is extremely time and resource consuming. Reporting systems
are the most ancient methods: they are useful for the analysis
of contributing factors of ADEs, but all reporting systems suf-
fer from important under-reporting biases [5], [7]. Another way
to detect ADEs is to mine free-text reports by means of natu-
ral language processing [8]–[11], assuming that the ADEs are
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described in the reports, which is not frequent. Data mining is
sometimes used in the field of ADE detection. But it was mainly
used to analyze voluntary ADE reports [12]–[17] by means of
supervised rule induction methods such as decision trees, asso-
ciation rules, or Bayesian neural networks, and not to analyze
hospitalization records. As a consequence, the results can only
be used to analyze other voluntary ADE reports.

In the literature, the automated detection of ADE cases in
hospital records always relies on ADE detection rules. Whatever
their origin, the ADE detection rules always consist of one or
two conditions that lead to an outcome. Those conditions are
simple: two drugs [18]–[25], a drug and a laboratory result [5],
[18], [19], [26]–[28], [30], a drug alone [5], [18], [21], [22], a
drug and one patient’s characteristic [5], [18], [24], or a drug
and a drug allergy [18], [24], [27]. Those works are not able
to mix more complex patterns of conditions, and the effects of
drug discontinuation are ignored. Those rules usually lead to
overalerting, as they detect many potential cases that are not
real ADE cases [29]. This is notably due to the absence of
contextualization of the knowledge (the same rules are applied
in every medical department) and the absence of segmentation
of the population (the rules do not involve additional conditions
that could increase the probability of the outcome).

II. OBJECTIVES

In order to improve the patient safety and avoid the under-
reporting bias, this paper aims at automatically discovering
ADEs that occurred in inpatients. This will be done by iden-
tifying situations at risk of ADE by data mining of routinely
collected data of past hospitalizations. In those data, the ADEs
are not explicitly flagged as no preliminary review is performed.
Outpatients’ ADEs leading to hospitalization will not be studied.

A list of outcomes will first be defined, and the link between
those outcomes and prior drug administrations or discontinu-
ations will be studied by means of supervised rule induction
techniques applied on a training set. Rules will be obtained, in
which an outcome is explained by a set of drugs in combination
with a clinical background, in the form of ADE detection rules
(e.g., drug_A & background_B → outcome_C). Then those
rules will be applied onto past hospital stays of an evaluation
set to get contextualized statistics such as the confidence (e.g.,
probability of outcome_C when drug_A and background_B are
present).

Regarding data mining techniques, two issues have to be
solved: 1) the temporal constraints have to be taken into ac-
count; and 2) we have to use supervised rule-induction meth-
ods, although the ADEs are not explicitly flagged in the routinely
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TABLE I
DESCRIPTION OF THE HOSPITALS AND STAYS USED

collected data, which are usually required in the classical rule
induction method.

III. MATERIAL

A. Electronic Records of Past Hospital Stays

In order to analyze past hospital stays, data are extracted
from several hospitals’ electronic health records (EHRs) to feed
a common repository with past fully anonymized hospital stays.
The repository fits a common data model that has been designed
within the PSIP Project (patient safety thought intelligent proce-
dures in medication), a European project that aims at facilitating
the development of knowledge on ADE, and improving the med-
ication cycle in hospital environments [30], [31]. Only routinely
collected data are used: no data have to be specifically recorded
for the project. For each hospital stay, those data include the
following.

1) Medical and administrative information (e.g., age, gender,
admission date, medical department, etc.).

2) Diagnoses encoded using the International Classification
of Diseases, tenth version (ICD10).

3) Medical procedures encoded using national classifica-
tions, including therapeutic and diagnostic procedures.

4) Drugs administered to the patient, encoded using the
Anatomical Therapeutic Chemical classification (ATC).

5) Laboratory results encoded using the International Union
of Pure and Applied Chemistry classification.

6) Anonymized free-text records, such as the discharge letter.
The data from EHRs are provided by six hospitals that are

part of the PSIP Project. This study is performed using 115 447
records from six hospitals (see Table I). They allow for a four-
year follow up (from 2007 to 2010).

B. ADE Detection Rules From the Summaries
of Product Characteristics

In many countries, the summaries of product characteristics
(SPCs) describe the official and exhaustive information about
ADEs. They can be used to support the drug prescription pro-
cess. They are available for healthcare professionals through
websites and various supports, and for patients through patient
information leaflets. In this paper, those SPCs are necessary 1)
to get an exhaustive list of the possible outcomes that can be
observed due to ADEs, irrespective of the causes and 2) to get
a reliable set of rules to validate the results of data mining.

Fig. 1. Example of aggregation of laboratory results: several values of blood
potassium over time enable to search for simple events.

In France, the SPCs are managed by the French drug agency
(AFSSAPS, French agency for sanitary security of health prod-
ucts). A structured version of the SPCs is provided by the Vidal
Company in the form of rules where one or two conditions
lead to an outcome (e.g., Furosemide → hypokalemia). In those
rules, the kind of outcome is described using free text. More
than 500 000 rules are available, those rules lead to 228 differ-
ent kinds of clinical or paraclinical outcomes. The paraclinical
outcomes are mainly laboratory or electrocardiographic abnor-
mal results.

IV. METHODS

A. Aggregation of the Complex Data of the Stays
Into Simple Events

1) General Principles: The data described in the data reposi-
tory are characterized by a complex data scheme, very numerous
classes (about 17 000 codes for ICD10, about 5400 codes for the
ATC, etc.) and repeated measurements throughout the hospital-
ization (e.g., laboratory parameters and drug administrations).
Those characteristics make those data too complex to be mined
using statistical methods. The aim of the data-to-event aggrega-
tion process is to automatically get a simpler representation of
data for data mining purposes.

Aggregation engines are developed in order to transform the
available data into information described as sets of events. For
each kind of data (administrative information, diagnoses, drugs,
and laboratory results), a specific aggregation engine is devel-
oped and fed with a mapping. Each mapping is described by
means of extensible markup language (XML) files outside the
engine. The aggregation engines enable to describe the events in
terms of binary variables complemented by start and stop dates.
Those engines are not static and can be adapted with respect to
the context.

2) Example of Aggregation of Laboratory Results: In the ex-
ample displayed in Fig. 1, for a given stay, several measures of
potassium are available. Potassium is an electrolyte; its level in
the blood should not reach too low or too high values; otherwise,
it could lead to lethal heart arrhythmias. The aim of the aggre-
gation process is to get simple information from those repeated
measures. In the case displayed in Fig. 1, there is a hyper-
kalemia (too high potassium value) from day 2 to day 6 and no
hypokalemia. Finally, the various measures can be summarized
into two binary variables: hypokalemia = 0 and hyperkalemia =
1. In that case, a start and stop date can be added. Such variables
are easier to mine using statistical methods.



IE
EE

Pr
oo

f

CHAZARD et al.: DATA MINING TO GENERATE ADVERSE DRUG EVENTS DETECTION RULES 3

3) New Variables Made Available by the Aggregation: The
aggregation engines transform the data into several binary vari-
ables that can easily be mined.

1) Fifteen variables related to demographic and administra-
tive information.

2) Forty-eight variables related to chronic diseases.
3) Five hundred variables related to drug administration or

drug discontinuations. The classification considers phar-
macodynamics and pharmacokinetics, although most of
the existing drug classifications are based on indications.

4) Thirty-five variables related to laboratory value
abnormalities.

B. Identification of the Outcomes in Relation With ADEs

As described in Section III, a list of outcomes is extracted
from the summaries of product characteristics. The outcomes
are traced in the data essentially by screening the laboratory re-
sults and administered drugs; this is possible through different
ways depending on the category of outcome. For instance, the
occurrence of a hyperkalemia (laboratory-related outcome) is
directly traced using the potassium level in the blood. The oc-
currence of a hemorrhage under vitamin K antagonists (VKA)
can be traced through different ways: 1) an increase of the in-
ternational normalized ratio (INR), a laboratory parameter that
rises up in case of VKA overdose; and 2) the vitamin K admin-
istration, an antidote which is prescribed in case of hemorrhage
under VKA.

The structured SPC database describes 228 different kinds of
outcomes. 83 (37%) of those outcomes are traceable in this pa-
per, due to the available data. Duplicate entries are then removed;
for instance, in the initial list, “hyperbilirubinemia” is also de-
scribed using two synonyms, “bilirubinemia higher than twice
the normal upper bound” and “jaundice.” As a consequence,
those 83 outcomes are traced through 56 different variables.
Those outcomes correspond to life-threatening ADEs, such as
hyperkalemia of hemorrhage hazard. Unfortunately, some out-
comes cannot be traced in the data. This is the case especially for
minor clinical incidents such as nausea or gastric pain cannot be
traced. Those outcomes could correspond to ICD10 codes but
in most hospitals, such codes are not flagged with a date.

C. Data-Mining-Based Induction of ADE Detection Rules

The knowledge about ADEs can be expressed using rules
where some conditions lead to an outcome. Some of the vari-
ables computed by the aggregation process can be used as out-
come (e.g., death) and some other ones can be used as conditions
(e.g., chronic renal failure). In total, 588 variables can be used
as conditions to explain 56 different outcomes. The objective
here is to automatically link conditions with outcomes and then
to discover ADE detection rules using data mining techniques.

After a complete review of the available data mining super-
vised and unsupervised techniques, and after several experi-
ments, it was decided to use decision trees (with the CART
method: Classification and Regression Trees) [32]–[39] and as-
sociation rules [40]. Both methods enable to identify several
decision rules containing 1 to K conditions such as

Fig. 2. Example of two rules. A “segmentation” condition is underlined: it
does not explain why the outcome occurs but deeply changes its probability.

IF(condition_1 &. . .& condition_K) THEN outcome.

The dataset (92 486 stays) is split into a learning set that is
used for the rule induction (31 579 stays of the year 2007) and
an evaluation set (60 907 stays of years 2008–2010). Decision
trees and association rules are automatically launched for each
outcome in each hospital and each medical department. The
datasets are managed during the rule induction so that temporal
constraints are taken into account. For a given outcome, only
conditions that are compatible regarding time are tested: each
condition must be an event that occurs before the outcome and
is still active or has ended less than a fixed delay before the
outcome occurs.

Both methods produce thousands of rules that must be fil-
tered. Most of the outcomes are due to the patient’s medical
background rather than the drugs administered to him. For that
reason, the rules are automatically filtered in order to keep the
ones in which a drug is involved. Only the rules that increase
the probability of the outcome and that have at least one of the
following condition types are kept.

1) A drug administration.
2) A drug discontinuation.
3) A laboratory value that is implicitly due to a drug admin-

istration (e.g., lithium blood level > 0, INR > 1, etc.).

D. Expert Validation and Reorganization of the Rules

It is mandatory to filter, validate, and organize the rules that
are obtained from the data mining: as the rules have to be used
by physicians, they must provide simple, validated, and un-
questionable knowledge. Several meetings are organized with
external experts (physicians, pharmacologists, pharmacists, and
statisticians) to filter and reorganize the set of rules. The rules
are examined and validated against the SPCs and scientific ref-
erences. During the review, the experts may ask for complemen-
tary queries on the potential ADE cases. At this step, the experts
may manually add a few rules that are considered as mandatory
although they were not discovered by the data mining process,
for instance because the conditions of the rules never occur (e.g.,
absolute contraindication) or because the conditions occur but
do not lead to any outcome.

In every rule, there is a set of conditions; the experts are asked
to characterize each condition according to one of the following
types.

1) “Segmentation” conditions are conditions that do not
explain why an outcome occurs, but deeply change its
probability. This kind of condition enables us to reduce
overalerting. An example of “segmentation” condition is
underlined in Fig. 2.

2) “Subgroup” conditions are fixed when, for some medical
reasons, it does not make sense to consider the rules for
all the patients in the same time. They are used to define
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Fig. 3. Rules are stored in a rule repository. A machine evaluation automat-
ically computes various statistics (occurrences) of the rules in every medical
department.

the sample before computing the statistics. The following
subgroups are systematically defined.

a) The INR deviations or vitamin K administrations are only
explored for VKA-treated patients.

b) The increase of activated partial thromboplastin time is
only explored for heparin-treated patients.

c) The hyperkalemia is explored separately for patients suf-
fering from renal insufficiency or not.

3) “Basic” conditions group together all the other conditions.

E. Automated Computation of Contextualized Statistics About
the Rules

Validated ADE detection rules are obtained from the phase
of expert validation. Those rules are then evaluated from a sta-
tistical point of view to provide the users with the classical
parameters such as confidence and relative risk. The statistics
are contextualized, i.e., they are computed separately in each
medical department or each hospital.

For that purpose, the validated rules are stored in a central
rules repository [41], using an XML schema. Then, in a few
minutes, an automated machine evaluation of the rules can be
performed using the 60 907 stays of the evaluation set (see
Fig. 3). A rule is a set of conditions leading to an outcome, such
as C1 & . . . & Ck = > O. Several statistics are computed for
each rule, separately in every medical department.

1) Support = P(O ∩ C1 ∩ . . . ∩ Ck ).
2) Confidence = P(O C1 ∩ . . . ∩ Ck ).
3) Relative risk RR=P (O/C1 ∩...∩Ck )

P (O/(C1 ∩...∩Ck )).
4) p value of the Fisher’s exact test for independency between

the outcome (O) and the set of conditions(C1 ∩ . . . ∩ Ck ).
5) Median delay between t1 (all the conditions are met) and

t2 (the outcome occurs).
The cases that match the conditions of a rule and have the out-

come are considered as potential ADE cases. Additional statis-
tics are computed to describe them: number, average age, death
rate, average length of stay, proportion of renal insufficiency,
etc.

F. Preliminary Evaluation

An independent medical expert is asked to review the cases
detected by the rules, i.e., the cases that match the conditions and
the outcome of the rules with respect to temporal constraints. He

is asked to assess whether each case is an ADE (the conditions
are responsible from the occurrence of the outcome) or not (there
is another explanation). He is also asked to review all the cases
that do not match any rule but present the outcome on the track
of false negatives.

V. RESULTS

A. Overview of the Rules Obtained in This Paper

In this paper, 56 different outcomes enable to trace the po-
tential consequences of ADEs. The supervised rule induction
generates rules that predict each outcome. The rules are always
filtered, validated, and tuned by the expert committee. 236 val-
idated rules are obtained. The experts also add some rules that
appear to be important in the academic knowledge and are not
discovered by the data mining (e.g., the conditions never occur,
or occur but not lead to the outcome). Over the 56 outcomes,
we have the following.

1) Twenty-seven kinds of outcomes are observed and enable
to discover ADE detection rules.

2) Ten outcomes are never or too rarely observed in the data,
so that no rule is discovered. Data mining will be per-
formed on larger datasets to get results.

3) Eighteen outcomes are observed but cannot be explained
by the use of drugs in the available dataset: the medical
background of the patient is a sufficient explanation, so
that no rule is discovered.

The 236 rules that are obtained can be classified through the
outcome they enable to predict (see Table II). Those rules can
also be classified into several categories.

1) One hundred and twenty-seven rules have been discov-
ered by data mining and confirmed by the SPCs and they
bring new knowledge such as additional segmentation
conditions.

2) Forty-four rules have been discovered by data mining and
are not present in the SPCs but can be indirectly explained
using academic knowledge. Those rules bring new knowl-
edge in ADE detection.

3) Twenty-five rules have been discovered by data mining
and already exist as is in the SPCs.

4) Forty rules have not been discovered by data mining but
are important in the SPCs. They have been enforced by
the experts and do not produce significant statistics. The
contribution of this paper is to compute statistics about
those rules and quantify their usefulness.

B. Example of an ADE Detection Rule and Related Statistics

The following rule is generated by data mining:
Vitamin K antagonist & anti-diarrheal drug → INR ≥ 5.
The rule can be explained as follows: in case of diarrhea,

the VKA absorption is decreased, which is probably balanced
by an increase of the VKA dose. Once an antidiarrheal drug is
administered, the VKA absorption is restored. In the absence of
dose adjustment, this leads to a VKA overdose detected by an
INR value over 5, which can lead to a hemorrhage. The statis-
tics that are related to that rule for the year 2009 are described
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TABLE II
OUTCOMES AND NUMBER OF ADE DETECTION RULES

TABLE III
EXAMPLE OF A RULE: VKA & ANTI-DIARRHEAL → VKA OVERDOSE

(INR≥5)

in Table III, as well as the follow-up of one hospital during
four years. Each line of the table displays the results obtained
in each of the studied hospitals. In fact, the results are avail-
able for each medical department of those hospitals. In both
hospitals 1 and 2, the probability of VKA overdose once the
conditions are met is around 20%, with a significant increase
of the risk, and a median delay of two or three days. In hos-
pitals 3, 4, and 5, no case of VKA overdose is observed when
the same conditions are matched. It is interesting to notice that
even for a validated rule, its confidence may vary a lot with
respect to the hospital or medical department. This is probably
due to the fact that the patients (demographic and medical back-

TABLE IV
EVALUATION OF ADE DETECTION IN THE FIELD OF HYPERKALEMIA

ground), the medication processes, and the monitoring policies
are different. For instance, in some departments, the nurses are
quite self-powered for “comfort” drug administration. In other
departments, the INR is not frequently monitored even in case
of change in the medication. An immediate consequence of the
results of Table III is that the use of such a rule in a clinical
decision support system (CDSS) would lead to about 78% of
false alerts in hospitals 1 and 2, which is acceptable, but also
to 100% of false alerts in hospitals 3, 4, and 5, which is not
acceptable.

C. Preliminary Evaluation

A preliminary evaluation has been conducted exhaustively
on the hyperkalemia cases of hospital n◦1 during the year 2010
(14 747 stays). The results are reported in Table IV. None of
the cases detected in the review had been reported to the patient
safety unit or to official agencies, although the potassium was
above 6 mmol/l in 26.8% cases, and there was an administration
of Kayexalate, a potassium chelator, in 29.3% cases. This review
is being continued in all the fields covered by the rules.

VI. DISCUSSION

A. Overview

In this study, data about 115 447 past hospital stays are col-
lected and prepared for data mining. A list of potential outcomes
is obtained from the SPCs and 56 of them are traced in the data.
By means of decision trees and association rules, decision rules
are extracted from a training set (34% of the stay). An expert
committee filters and validates those rules: 236 validated ADE
detection rules are obtained, and statistics are automatically
computed in an evaluation set (66% of the stays).

B. Discussion of the Method

This method is able to automatically discover ADE detection
rules. Some are already known and validated. In addition, the
method enables to discover new knowledge, such as segmen-
tation conditions or unknown rules. The academic knowledge
does not provide any probability of the ADEs. In this paper,
we are able to sort the rules by confidence and to prioritize
the knowledge. Each one of the 236 ADE detection rules is
automatically complemented with contextualized statistics, i.e.,
statistics computed separately in every hospital or medical de-
partment. As shown in the example in Table III, the confidence
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often varies a lot with respect to the place a rule is applied.
Those differences might be due to latent variables that are not
observed in the data, such as the risk monitoring policies or the
medical background of the patient.

A drawback of the method is that only the data that are
recorded can be mined. In this paper, we are not able to de-
tect clinical events that are not registered in routinely collected
data, e.g., rash, nausea, stomach pain, etc. The patient’s weight
and known drug allergies could have been used, but this infor-
mation was not sufficiently present in the dataset. The drugs
prescribed shortly before the hospitalization were not available
and could not be analyzed. Finally, as the rule induction is data
mining based, events that never or too rarely occur do not en-
able to discover rules, which is the case here for 11 outcomes.
For that reason, the experts were allowed to add some impor-
tant rules that never occur into the rule base, such as absolute
contraindications. In that case, this paper contributes to com-
pute the statistics about those academic rules. The same method
could provide interesting results using other data where the out-
comes occur as soon as they are available in databases, such as
electrocardiographic records or oxymetry records.

For the data mining phase, the data have to be simplified.
For instance, the duration and dose of medications have been
ignored, as well as the numeric value of the laboratory results.
However, the rules so obtained can be enriched by such pa-
rameters later, for instance, in a CDSS, for prospective ADE
prevention.

Producing ADE detection rules by data mining is complex.
Indeed, the ADE cases are not flagged in the data: when hyper-
kalemia can be observed, we do not simply know if it is an ADE
or not. However, the supervised rule induction methods are used
to get some rules that predict hyperkalemia, and in this paper,
we try to obtain rules that predict hyperkalemia in the frame of
an ADE. Yet most of the outcomes are principally due to the pa-
tients’ diseases, and occasionally due to drugs. For that reason,
an automated filtering and an expert filtering and reorganization
of the rules are performed. As the decision trees are launched
several times in different department and on different periods,
their instability is not a problem and provides experts with sev-
eral partially redundant rules, as the association rules do. Once
the rules have been filtered and modified by the experts, they
are automatically evaluated in all the medical departments using
the evaluation set.

Some authors have developed specific rule-induction meth-
ods that deal with temporal aspects [42]–[45]. These methods
try to discover some events that, in a given order, lead to an
outcome. Regarding ADEs, those methods appear not to be rel-
evant because the order of appearance of the conditions is not
overriding, but the conditions have to be active simultaneously.
It is not a problem of order of appearance, but a problem of con-
comitant presence and delay up to the condition. In addition,
the discontinuation of a drug itself is a kind of event. For all
these reasons, the temporal conditions are analyzed and filtered
before the rule induction to ensure that all the events that are
candidate to explain an outcome are compatible with the out-
come regarding time. Then, the same constraints are applied for
the rule automated evaluation.

C. Discussion of the ADE Detection Rules Discovered

This study enables us to automatically discover ADE detec-
tion rules by means of data mining techniques; the rules are then
filtered and validated by experts. The rules consist of a set of
conditions that lead to an effect, those conditions being related
to demographic characteristics, drug administrations (without
dose), laboratory results, or diagnoses. The number of condi-
tions is not constrained by the method, and the output provides
more complex rules than in other studies. In addition, this study
takes into account the effects of drug discontinuation. Some pre-
vious works have involved segmentation conditions, such as the
age, the renal function, the hepatic function, and the patient’s
weight [18], [24]. This study does so (53% of the 236 rules),
except that the patient’s weight is not available in the data.

One of the main risks of the systems developed to detect
or prevent ADEs is overalerting. This is easily understandable
when the official SPCs describe situations at risk of ADEs by
means of thousands of rules. This leads to low positive predictive
values and makes the system unreliable. Other authors describe
sets of rules [29] but most of them lead to overalerting, notably
because the rules are too simple and rarely involve segmentation
conditions, i.e., conditions that are not directly responsible from
the outcome but change its probability. In addition, those works
do not support contextualization, i.e., the fact that the confidence
of a rule varies deeply with respect to the place.

The rules discovered in this study mainly deal with the effects
of anticoagulant drugs (35% of the rules) and hyperkalemia
(27% of the rules). This paper also highlights the importance
of pharmacokinetic drug-to-drug interactions (25% of the rules)
that are often underestimated. Contrary to the accepted wisdom,
many “important” ADE detection rules are not discovered by
data mining because either the conditions never occur or, when
the conditions are present, the outcome never occurs. This is
probably because those rules are well known and, consequently,
the risk is well monitored. However, it is possible to input the
corresponding rules and enforce their automated evaluation.

D. Exploitation of the Results

Except the rules filtering performed by the experts, the whole
process is fully automated. In order to analyze the data of a new
hospital, about 1 h is required for 105 stays. The 236 rules and
the related files (description of the mappings, lexicon, statistics
computed in the automated evaluation, and textual explanations)
consist of a set of XML files. The format of those files is well
documented, so that it is easy to use them in any ADE detection
or prevention application.

VII. CONCLUSION

This paper brings innovative and semiautomated solutions
for ADE detection. The method is quite generic and could be
applied to other kinds of data as soon as they are available in
the EHR, such as structured results of electrocardiograms. The
results of the method used here bring an important contribution
to ADE knowledge. The rules that are obtained are versatile and
can be used either as detection rules on past hospital stays, or
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as prevention rules in a CDSS context. Those rules are already
loaded in several prototypes that are developed in the frame of
the PSIP Project.

1) A tool designed for retrospective ADE detection and
follow-up in past hospitalizations: the Scorecards [46].

2) A knowledge-based system for prospective ADE preven-
tion during the medication process, which is used by three
CDSS: one embedded in a computerized physician order
entry, another embedded in an EHR, and a prescription
simulation tool that is available even without any Hospital
information system.
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